ADVANCED REACTOR, FUEL CYCLE, AND ENERGY PRODUCTS WORKSHOP FOR UNIVERSITIES

Jim Bresee

Advanced Fuel Cycle R&D
Separations and Waste Forms

ANL, INL, LANL, ORNL, SRNL, PNNL

Workshop for Universities Hilton Hotel, Gaithersburg, MD March 20, 2007

Area Overall Work Scope

- Develop, demonstrate and deploy advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium
 - Substantially reduce nuclear waste
 - Simplify its disposition
 - Ensure the need for only one geological repository in the United States through the end of this century

FY06 ACCOMPLISHMENTS

- UREX+1a Integrated Process Laboratory-Scale Demonstration with LWR Spent Fuel
 - Successful TALSPEAK Process Development
- Engineering-scale recycle demonstration facility
 - Develop design concept and cost estimate
- Scaling of the Waste Form Production and Qualification

UREX+1a Integrated Process Laboratory-Scale Demonstration with LWR Spent Fuel

What was demonstrated?

- Process run with actual spent fuel dissolved in HNO₃
- Recovery of U, Tc, Cs/Sr, TRUs,
 RE, and non-RE FP

Results

- Excellent hydraulic performance
- Surpassed ALL process goals
- TALSPEAK process far exceeded decontamination requirements
 - Fuel requirements (lanthanide DF > 2,000)
 - Repository requirements (> 99.99% TRU recovery)

TALSPEAK – Where we are today

- Clear understanding of pH effects on distribution of Lanthanides
- Near-equilibrium distribution of lanthanides and actinides requires:
 - Enough contact time to allow for mass transfer
 - Mixing intensity that provides interface surface area

2005 results			2006 results	
Component	RAFFINATE (TRU Product)	PRODUCT (Ln)	RAFFINATE (TRU Product)	PRODUCT (Ln)
Pu	99.999	0.001	>99.99	<0.01
Np	99.999	0.001	>99.99	<0.01
Am	99.999	0.001	>99.99	<0.01
Cm	-	-	>99.999	<0.001
Nd	22	78	<0.02	>99.98
Eu	16	84	<0.05	>99.95
\sum Ln	12	88	<0.05	>99.95

WORK IN PROGRESS FOR FY07

Separations

- Completed 3 TALSPEAK demonstrations to determine process operating envelop
- Completed FPEX flowsheet design to replace CCD-PEG process
- Perform UREX+3 COEX or UREX+1a flowsheet demonstration
 - Using LWR spent fuel
 - Replace CCD-PEG with FPEX process
- Demonstrate Voloxidation process at low temperature for tritium recovery
- Develop automated product removal system for the planar electrorefiner (PEER)
- Develop and demonstrate performance of electrolysis cell for group actinide recovery
- Develop oxide reduction process for UREX+ product conversion

Waste/Product Forms

- Develop test plan to optimize and scale up Tc waste form process
- Evaluate alternatives for Cs/Sr waste form
- Evaluate alternatives for Iodine capture

PLANS FOR FY08-09

Separations

- Continue development of UREX+ processes for treatment of LWR spent fuel
- Continue simulation efforts to support process design, safeguards and accountability of recycling facilities
- Initiate development of aqueous and electrochemical based processes for the treatment of advanced recycle fuels
- Optimize recycling facilities such that they are easier to safeguard and allow improved material accountability

Waste/Product Forms

- Evaluate economic feasibility of hulls decontamination for LLW disposal
- Select base line for all waste and product forms for the recycling of LWR spent fuel
- Initiate R&D supporting certification of waste and product forms
- Continue simulation efforts to support license applications for both product and waste forms